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Abstract 

The North Star Ambulatory Assessment (NSAA) is a widely used functional endpoint 

in drug development for ambulatory patients with Duchenne muscular dystrophy 

(DMD). Accurately predicting NSAA total score trajectories is important for design-

ing randomized trials for novel therapies in DMD and for contextualizing outcomes, 

especially over longer-term follow-up (>18 months) when placebo-controlled studies 

are infeasible. We developed a prognostic model for NSAA total score trajectories 

over at most 5 years of follow-up for patients with DMD aged 4 to <16 years who 

were initially ambulatory and receiving corticosteroids but no other disease-modifying 

therapies. The model was based on longitudinal data from four natural history 

databases: UZ Leuven, PRO-DMD-01 (provided by CureDuchenne), the North Star 

Clinical Network, and iMDEX. Candidate predictors included age, height, weight, 

body mass index, steroid type and regime, NSAA total score, rise from floor velocity, 
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and 10-meter walk/run velocity, as well as DMD genotype class, index year, and data 

source. Among N = 416 patients at baseline, mean age was 8.2 years, mean NSAA 

total score was 24, and 61% were receiving prednisone and 39% deflazacort, with 

the majority having been treated with daily corticosteroid regimens (69%) rela-

tive to other regimens (31%). Patients had an average of four NSAA assessments 

post-baseline during a median follow-up of 2.6 years (inter-quartile range 1.9 to 3.6 

years). The best-fitting model in the full study sample explained 39% of the variation 

in NSAA total score changes, with prediction errors of ±3.6, 5.1, 5.9, 7.5, 9.5 NSAA 

units during follow-up years 1–5, respectively. The most important predictors were 

baseline age, NSAA, rise from floor velocity, and 10-meter walk/run velocity. In con-

clusion, trajectories of ambulatory motor function in DMD, as measured by the NSAA 

total score, can be well-predicted using readily available baseline characteristics. We 

discuss applications of these predictions to DMD drug development.

Introduction

Duchenne muscular dystrophy (DMD) is a progressive, disabling, and life-limiting 
disease caused by mutations in the DMD gene on the X chromosome, in 15.9 to 19.5 
live male births per 100,000 [1]. Without fully functional dystrophin protein, muscles 
incur cumulative damage, fibrosis, and fatty replacement, leading to progressive 
weakness and eventual loss of function [2]. Motor function deficits typically present 
between the ages of 1 and 3 years, and subsequently progress through a series of 
functional losses [3]. Loss of independent ambulation typically occurs between the 
ages of 8 and 16 years and is followed by loss of upper-limb function, progressive 
musculoskeletal deformities, impaired airway clearance, need for mechanical venti-
lation, cardiomyopathy, and premature death [4,5]. Therapeutic interventions aim to 
stabilize or slow the disease progression. There is presently no cure for DMD.

While the progression of DMD is inexorable, the rate of progression varies across 
patients [6,7]. This heterogeneity in progression rates has confounded drug devel-
opment in DMD and complicates counseling for families. Clinical trials seeking to 
measure a treatment effect of slowing or stabilizing disease progression must distin-
guish this effect from the wide range of natural variation, as well as possible impacts 
of differences in applying standards of care (e.g., age at initiation of steroids, use of 
daily vs. intermittent regimens, physiotherapy and other factors), which is challenging 
with the limited sample sizes and follow-up times feasible in DMD clinical studies.

The ability to predict patient outcomes in the absence of an investigational 
therapy, based on clinical characteristics at baseline, can help address this chal-
lenge. Multiple approaches for improving the efficiency of clinical trials, including 
stratification, enrichment, baseline adjustment and placebo augmentation, as well 
as contextualizing long-term outcomes from extension studies, depend on such 
predictions for effectiveness. The more accurately outcomes can be predicted, the 
more these approaches will improve power and precision for measuring treatment 
effects [8].
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Motor function outcomes in DMD clinical trials and in clinical practice are often 
measured using the North Star Ambulatory Assessment (NSAA) [9,10]. The NSAA 
was developed and validated for measuring aspects of motor function important to 
the lives of patients with DMD [11,12]; it has served as a primary and secondary 
endpoint in DMD clinical trials [13], and is used in many countries as a routine clinical 
assessment tool consistent with care guidelines [5].

A wealth of previous research has identified prognostic factors for both 48-week 
and the longer-term (over 2 years) changes in motor function in DMD, including 
predictors of changes in NSAA scores [13–17], 6-minute walk distance (6MWD) [18], 
timed 4 stair climb (4SC) [19], and time to loss of ambulatory function [20,21]. In the 
present study, we extend this research to develop composite prognostic models for 
longer-term (up to 5 years) trajectories of NSAA total scores among patients who 
were initially ambulatory, aged 4 to 16 years, and had already initiated corticosteroid 
therapy at least 3 months previously. This population was selected to encompass that 
of many clinical trials in ambulatory DMD.

Materials and methods

Data sources

Retrospective clinical data were obtained from four sources: the neuromuscular 
clinic at Universitaire Ziekenhuizen Leuven (Leuven) from 2011 to 2016 (data 
accessed for the study on September 25, 2015), the PRO-DMD-01 prospective 
natural history study (years 2012–2016) [NCT01753804] for which data were pro-
vided by CureDuchenne (data accessed for the study on June 7, 2018), a 501(c)
(3) DMD patient foundation, the iMDEX natural history study (iMDEX) from 2012 
to 2018 [NCT02780492] with data provided by the French Muscular Dystrophy 
Association (AFM) (data accessed for the study on January 23, 2019), and the 
North Star UK (NSUK) database from 2005 to 2015 (data accessed for the study 
on October 4, 2015). Clinical assessments in all data sources were conducted 
approximately every 6 months. Additional data source characteristics are summa-
rized in S1 Table.

Data collection was approved by the ethics committees from each institution 
(University Hospitals Leuven, each participating center in iMDEX, PRO-DMD-01 
and the North Star Clinical Network). Written informed consent/assent was 
obtained from each participant or, where appropriate, their caregiver before the 
study procedures were conducted. Only anonymous, deidentified data were 
analyzed.

Drawing from these data sources, all patients with a clinic visit meeting the 
following criteria were included in this study: age at least 4 and under 16 years 
old, at least minimal ambulatory function (defined as NSAA total score over 5 
and 10-meter walk/run [10MWR] under 30s), receiving corticosteroids for at 
least 3 months, follow-up NSAA assessments available from at least 1 subse-
quent visit within up to 5 years, and non-missing data on the candidate prognos-
tic factors. The first visit meeting these criteria was designated as the baseline 
visit.
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Outcome measures

The primary outcome for this study was the trajectory of change in the NSAA total score from baseline to up to 5 years 
of follow-up. In all contributing data sources, patients’ performance on each of the 17 NSAA activity items was scored 
by trained clinical staff as either 0 (unable to perform independently), 1 (performs activity using a modified method but is 
able to complete independently), or 2 (able to perform independently without modification). The NSAA total score is the 
sum of scores across all activities and ranges from 0 to 34, with higher scores indicating better function [11]. For all data 
sources, the NSAA was measured by trained assessors, applying the same criteria as used for clinical trials conducted at 
the centers.

Candidate predictors

The primary patient characteristics measured at baseline and evaluated for prognostic associations with NSAA outcomes 
were age, height, weight, body mass index (BMI), steroid type, categorized as receiving prednisone or deflazacort, and 
baseline measures of motor function available in all data sources: NSAA total score, rise from floor (RFF) velocity, and 
10MWR velocity. Sensitivity analyses considered additional factors: steroid regimen (daily vs. other), data source, cal-
endar year, classified according to the distribution of years represented as up to 2009, 2010–2013, 2014, and 2015 and 
later, consistent with Muntoni et al. 2022 [22], and DMD genotype, classified by amenability to certain targeted therapies, 
as defined in Muntoni et al. 2023 [23].

Statistical analyses

Model development.  Within the development sample, NSAA total score outcomes over up to 5 years post-baseline 
were studied using generalized estimating equations (GEE) with exchangeable correlation structure. The dependent 
variable was the change in NSAA total score from baseline to each post-baseline visit. The GEE approach was selected 
because it is robust to non-Gaussian distributions of NSAA change from baseline. This choice was further supported by 
our previous analyses using linear mixed effects models [24], which resulted in slightly larger RMSE compared to GEE 
when validated in independent test data.

A series of models was fitted to the data based on different combinations of predictors, all interacted with time from 
baseline. Models 1–10 were the primary models investigated (Table 1); Models 11–18 were exploratory (S2 Table). 
Different shapes for the NSAA total score trajectories over time were evaluated, including linear, quadratic, cubic, and 

Table 1.  Main Model Specifications.

Predictorsa Prediction Models

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10
(Core)

Linear time ✓
Quadratic time ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Linear age ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Quadratic age ✓ ✓ ✓ ✓ ✓ ✓ ✓
NSAA total score ✓ ✓ ✓ ✓
RFF velocity ✓ ✓ ✓ ✓
10MWR velocity ✓ ✓ ✓ ✓
Steroid use ✓ ✓
Weight, height, BMI ✓
BMI, body mass index; M, model; NSAA, North Star ambulatory assessment; RFF, rise from floor; 10MWR, 10-meter walk/run.
aCheck marks indicate that the predictor was included in the model.

https://doi.org/10.1371/journal.pone.0325736.t001

https://doi.org/10.1371/journal.pone.0325736.t001
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piecewise-linear with knots at 1, 2, 3, and 4 years. Model fit was evaluated by comparing root mean squared errors 
(RMSE), based on the differences between observed and predicted values across patients and across post-baseline 
visits. RMSEs were calculated at specific time intervals and averaged across all follow-up time. Predictive accuracy was 
measured using 5-fold cross-validation. Explained variation in the NSAA total score change was calculated using marginal 
R-squared. To further characterize prognostic performance, patients were stratified by quartile of predicted 5-year change 
in NSAA, and the observed NSAA total score trajectories were plotted for patients stratified by quartile.

Assessing the impact of missing data

As patients with DMD progress and approach loss of ambulatory function, the choice of whether to conduct the NSAA for 
an individual who is likely to struggle significantly or to exhibit absence of ambulatory function can vary across care cen-
ters. Missing NSAA values may therefore be associated with poor motor function. This type of missing data could bias the 
observed NSAA data towards better-than-actual function for the studied population. Such bias would affect fitted predic-
tion models as well as any direct analysis of the observed NSAA data.

To understand the magnitude and direction of bias due to missing NSAA assessments, we conducted an imputation 
analysis to attempt to recover the average NSAA trajectory for the complete data, i.e., the average that would have 
been observed if no NSAA data were missing. Missing NSAA values were subjected to multiple imputation by chained 
equations (MICE) under a fully conditional specification using the mice package in R [25]. This approach successively 
imputes missing NSAA values via predictions based on all current and earlier observed and imputed NSAA values and 
baseline characteristics in the population [25,26]. Additional details are provided in S1 Text. The impact of missing data 
was assessed by comparing mean NSAA total score trajectories between the observed data and the average across the 
imputed data sets.

Sensitivity analysis using machine learning

We evaluated whether a machine learning approach using the Mixed-Effects Random Forest (MERF) model could 
improve predictive performance compared to GEE [27]. The MERF model incorporated the same predictors as the core 
GEE model but allowed for more flexible and complex interactions among predictors and non-linear relationships with 
outcomes. Model hyperparameters were tuned using a cross-validated grid search, as described in S2 Text.

Results

Baseline characteristics

A total of 416 patients and 1,682 post-baseline NSAA assessments were included in the analysis (Fig 1). The majority 
of the included patients were from the PRO-DMD-01 and NSUK data sources with 174 and 171 patients, respectively 
(Table 2). Mean ± standard deviation (SD) age at baseline was 8.2 ± 2.4 years. Patients included were ambulatory with a 
mean NSAA total score of 24.0 ± 6.6 units, a mean ± SD rise from floor (RFF) velocity of 0.2 ± 0.1 1/sec, and a mean ± SD 
10MWR of 1.9 ± 0.6 m/sec. Patients had 4 post-baseline NSAA assessments on average (N = 1682 assessments in total), 
over a median of 2.5 years of follow-up (range 0.3 to 5 years). At baseline, 60.6% and 39.4% were receiving prednisone 
and deflazacort, respectively. On average, patients were treated with corticosteroids for 25.0 ± 23.0 months before base-
line (range 3–116 months), with the majority having been treated with daily corticosteroid regimens (69%) relative to other 
regimens (31%). The baseline visits for the majority of patients occurred during the years 2010–2015.

Prognostic models

Sequential addition of baseline characteristics identified age, age squared, anthropometric measures (i.e., height, weight, 
and BMI), steroid type, and motor function measures (i.e., NSAA, RFF and 10MWR), along with quadratic effects of time, 
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as together explaining 39% of the variability in NSAA outcomes (Fig 2). Age alone (modeled as the effects of age and age 
squared) explained 27% of the variability in NSAA outcomes. No single functional measure increased this beyond 30%, 
but the addition of all 3 functional measures together increased the explained variation to 35%, with an additional 2% 
explained by including steroid type and a further 2% explained by including body size, to reach 39%. When subjected to 
cross-validation, the model including all of these characteristics, Model 10, performed best, by having the lowest RMSE 
overall and over each year of follow-up relative to Models 1–9 (Table 3).

The prognostic impact of adding other patient characteristics to the best-performing model, Model 10, was assessed, 
with sample sizes declining in some cases due to missing baseline data. Genotype class (n = 404 patients; n = 1645 
assessments), daily vs. other steroid regimen (n = 406 patients; n = 1645 assessments), and calendar year (n = 415; 
n = 1678 assessments), as well as more complex models for the shape of NSAA total score change trajectories over time, 
did not substantially improve predictions. None of these additional predictors improved explained variation by more than 
2% and cross-validated prediction errors generally worsened or improved very slightly in a few instances (S3 Table).

Considering the predictive performance, data availability, and knowledge that true trajectories are non-linear over 
longer periods, Model 10 was selected as the core model. Estimated coefficients for Model 10 are summarized in Table 4. 
Estimated coefficients for models incorporating steroid regimen or genotype class are included in S4 Table.

Fig 1.  Sample Selection. BMI, body mass index; NSAA, North Star ambulatory assessment; RFF, rise from floor; 10MWR, 10-meter walk/run.

https://doi.org/10.1371/journal.pone.0325736.g001

https://doi.org/10.1371/journal.pone.0325736.g001
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Table 2.  Baseline Characteristics.

Total Leuven iMDEX NSUK PRO-DMD-01

Characteristica N = 416 N = 44 N = 27 N = 171 N = 174

Demographics and vitals

Age (years)

Mean ± SD 8.2 ± 2.4 8.7 ± 2.8 7.8 ± 1.9 7.6 ± 2.0 8.8 ± 2.6

Median (range) 7.6 (4.4, 15.5) 8.2 (4.6, 14.6) 7.4 (5.5, 12.7) 7.2 (4.5, 15.3) 8.3 (4.4, 15.5)

Age category (years)

[4, 5) 12 (2.9%) 2 (4.6%) 0 (0.0%) 7 (4.1%) 3 (1.7%)

[5, 6) 56 (13.5%) 8 (18.2%) 4 (14.8%) 28 (16.4%) 16 (9.2%)

[6, 7) 89 (21.4%) 5 (11.4%) 9 (33.3%) 41 (24.0%) 34 (19.5%)

[7, 8) 70 (16.8%) 7 (15.9%) 3 (11.1%) 31 (18.1%) 29 (16.7%)

[8, 9) 46 (11.1%) 3 (6.8%) 4 (14.8%) 22 (12.9%) 17 (9.8%)

[9, 10) 50 (12.0%) 3 (6.8%) 4 (14.8%) 19 (11.1%) 24 (13.8%)

[10, 11) 34 (8.2%) 3 (6.8%) 1 (3.7%) 13 (7.6%) 17 (9.8%)

[11, 12) 24 (5.8%) 8 (18.2%) 1 (3.7%) 5 (2.9%) 10 (5.8%)

[12, 13) 13 (3.1%) 3 (6.8%) 1 (3.7%) 2 (1.2%) 7 (4.0%)

[13, 14) 13 (3.1%) 0 (0.0%) 0 (0.0%) 2 (1.2%) 11 (6.3%)

[14, 15) 6 (1.4%) 2 (4.6%) 0 (0.0%) 0 (0.0%) 4 (2.3%)

[15, 16) 3 (0.7%) 0 (0.0%) 0 (0.0%) 1 (0.6%) 2 (1.2%)

Height (cm)

Mean ± SD 120.4 ± 11.6 119.3 ± 12.4 119.9 ± 11.0 119.4 ± 10.9 121.7 ± 12.1

Median (range) 119.2 (94.5, 156.9) 119.2 (95.0, 151.6) 119 (104.0, 144.0) 117 (97.5, 156.9) 121.4 (94.5, 152.0)

Weight (kg)

Mean ± SD 27.7 ± 9.6 28.8 ± 11.4 26.3 ± 8.6 27.2 ± 9.1 28.1 ± 9.9

Median (range) 24.7 (14.2, 70.4) 24.6 (14.2, 60.2) 24.7 (17.0, 48.7) 24 (16.1, 59.5) 25.2 (14.7, 70.4)

BMI (kg/m2)

Mean ± SD 18.6 ± 3.5 19.5 ± 4.3 17.8 ± 2.8 18.6 ± 3.2 18.5 ± 3.7

Median (range) 17.5 (8.8, 31.5) 17.5 (14.5, 30.5) 17.3 (13.8, 25.8) 17.6 (12.7, 30.8) 17.5 (8.8, 31.5)

Steroid use

Steroid type

Prednisone 252 (60.6%) 5 (11.4%) 21 (77.8%) 163 (95.3%) 63 (36.2%)

Deflazacort 164 (39.4%) 39 (88.6%) 6 (22.2%) 8 (4.7%) 111 (63.8%)

Steroid duration (months)

Mean ± SD 24.9 ± 23.0 30.2 ± 24.5 – 17.1 ± 15.4 31.3 ± 26.3

Median (range) 17.51 (3.0, 116.0) 26.0 (3.2, 76.4) – 12 (3.0, 80.0) 24.4 (3.1, 116.0)

Steroid regimen

Daily 280 (69.0%) 44 (100.0%) 18 (72.0%) 88 (54.0%) 130 (74.7%)

Non-daily 126 (31.0%) 0 (0.0%) 7 (28.0%) 75 (46.0%) 44 (25.3%)

Ambulatory motor function

NSAA total score

Mean ± SD 24.0 ± 6.6 22.9 ± 7.2 24.7 ± 6.5 24.6 ± 6.0 23.5 ± 7.0

Median (range) 25 (6.0, 34.0) 25 (9.0, 33.0) 24 (11.0, 34.0) 25 (10.0, 34.0) 25 (6.0, 34.0)

RFF (velocity) (1/sec)

Mean ± SD 0.2 ± 0.1 0.2 ± 0.1 0.2 ± 0.1 0.2 ± 0.1 0.2 ± 0.1

Median (range) 0.2 (0.0, 0.7) 0.2 (0.0, 0.4) 0.2 (0.1, 0.4) 0.2 (0.0, 0.7) 0.2 (0.0, 0.6)

10MWR (velocity) (m/sec)

Mean ± SD 1.9 ± 0.6 2.0 ± 0.7 1.9 ± 0.5 1.7 ± 0.6 1.9 ± 0.5

(Continued)
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Total Leuven iMDEX NSUK PRO-DMD-01

Median (range) 1.8 (0.5, 4.1) 2.0 (0.6, 4.1) 2.0 (1.2, 2.8) 1.7 (0.7, 4.0) 1.9 (0.5, 3.3)

Year, genotype classes and follow-up duration

Year category

Up to 2009 144 (34.7%) 20 (45.5%) 0 (0.0%) 124 (72.9%) 0 (0.0%)

2010–2013 196 (47.2%) 20 (45.5%) 15 (55.6%) 46 (27.1%) 115 (66.1%)

2014 67 (16.1%) 3 (6.8%) 5 (18.5%) 0 (0.0%) 59 (33.9%)

2015 and later 8 (1.9%) 1 (2.3%) 7 (25.9%) 0 (0.0%) 0 (0.0%)

Genotype classification

Exon 44 skip 51 (12.6%) 3 (7.0%) 11 (40.7%) 15 (9.4%) 22 (12.6%)

Exon 45 skip 55 (13.6%) 5 (11.6%) 5 (18.5%) 14 (8.8%) 31 (17.8%)

Exon 51 skip 36 (8.9%) 4 (9.3%) 1 (3.7%) 22 (13.8%) 9 (5.2%)

Exon 53 skip 45 (11.1%) 3 (7.0%) 4 (14.8%) 12 (7.5%) 26 (14.9%)

Other skip-amenable 49 (12.1%) 6 (14.0%) 4 (14.8%) 16 (10.0%) 23 (13.2%)

Nonsense 22 (5.4%) 2 (4.6%) 0 (0.0%) 1 (0.63%) 19 (10.9%)

All others 146 (36.1%) 20 (46.5%) 2 (7.4%) 80 (50.0%) 44 (25.3%)

Follow-up duration (years)

Mean ± SD 2.6 ± 1.2 3.2 ± 1.5 2.4 ± 1.5 3.0 ± 1.3 2.2 ± 0.7

Median (range) 2.5 (0.3, 5.0) 3.8 (0.5, 5.0) 2.4 (0.4, 4.7) 3.1 (0.3, 5.0) 2.2 (0.4, 3.3)

BMI, body mass index; NSAA, North Star ambulatory assessment; RFF, rise from floor; SD, standard deviation; 10MWR, 10-meter walk/run.
aCounts and percentages are presented for categorical characteristics, unless otherwise noted.

https://doi.org/10.1371/journal.pone.0325736.t002

Fig 2.  Percentages of Variation in NSAA Total Score Outcomes (Marginal R2) Explained by Models Incorporating Different Factors. BMI, body 
mass index; NSAA, North Star ambulatory assessment; M, model; RFF, rise from floor; 10MWR, ten-meter walk/run. a Percentage of explained variation 
was measured using marginal R2. b Piecewise linear time (M11) includes knots at years 1, 2, 3, and 4.

https://doi.org/10.1371/journal.pone.0325736.g002

Table 2.  (Continued)

https://doi.org/10.1371/journal.pone.0325736.t002
https://doi.org/10.1371/journal.pone.0325736.g002
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When the observed NSAA total score change trajectories were stratified by quartiles of predicted 1-year change based 
on Model 10 (Fig 3), the first quartile (0–25th percentile) included more patients with rapid declines, the second and third 
quartiles included successively fewer rapid declines, and more patients with stable or moderate declines; the fourth 

Table 3.  Main Models Predictive Performance.

Modela Time from Baseline

1-year (N = 379)b 2-year (N = 327)b 3-year (N = 214)b 4-year (N = 115)b 5-year (N = 50)b Total (N = 416)b

RMSE CV-RMSE RMSE CV-RMSE RMSE CV-RMSE RMSE CV-RMSE RMSE CV-RMSE RMSE CV-RMSE

M1 3.98 3.99 5.82 5.85 7.30 7.31 9.12 9.09 9.32 9.38 6.24 6.27

M2 3.94 3.94 5.80 5.84 7.18 7.18 9.02 8.99 9.46 9.51 6.19 6.22

M3 3.72 3.74 5.53 5.56 6.67 6.70 8.26 8.25 9.37 9.48 5.83 5.87

M4 3.69 3.69 5.34 5.39 6.47 6.54 8.10 8.07 9.16 9.43 5.68 5.76

M5 3.70 3.72 5.35 5.42 6.49 6.60 8.13 8.16 9.15 9.51 5.70 5.81

M6 3.67 3.68 5.21 5.29 6.19 6.26 8.12 8.07 9.11 9.51 5.57 5.67

M7 3.65 3.66 5.25 5.30 6.30 6.38 7.81 7.90 9.24 9.86 5.58 5.69

M8 3.57 3.60 5.08 5.19 5.94 6.11 7.61 7.79 9.01 9.76 5.38 5.55

M9 3.56 3.59 5.06 5.17 5.80 6.00 7.34 7.52 8.96 9.77 5.30 5.49

M10 (Core) 3.55 3.58 4.96 5.09 5.69 5.91 7.21 7.47 8.61 9.53 5.20 5.43

CV-RMSE, cross-validated root mean squared error; M, model; RMSE, root mean squared error.
a Predictors included in each model can be found in Table 1.
b “N” corresponds to the number of patients with available data at each time point.

https://doi.org/10.1371/journal.pone.0325736.t003

Table 4.  Fitted Prediction Model for NSAA Trajectory.

Baseline characteristicsa Coefficient Standard Error P-value

Linear time × linear age −2.265 0.952 0.017

Linear time × quadratic age 0.102 0.053 0.054

Quadratic time × linear age 0.178 0.306 0.561

Quadratic time × quadratic age −0.008 0.018 0.670

Linear time × NSAA −0.182 0.072 0.012

Quadratic time × NSAA 0.029 0.023 0.198

Linear time × velocity RFF 13.91 3.487 0.000

Quadratic time × velocity RFF −2.101 1.013 0.038

Linear time × velocity 10MWR 1.811 0.789 0.022

Quadratic time × velocity 10MWR −0.34 0.24 0.156

Linear time × steroid use −1.087 0.713 0.127

Quadratic time × steroid use −0.06 0.258 0.816

Linear time × height −0.307 0.131 0.019

Quadratic time × height 0.029 0.044 0.514

Linear time × weight 0.501 0.27 0.064

Quadratic time × weight −0.027 0.09 0.760

Linear time × BMI −0.701 0.427 0.100

Quadratic time × BMI 0.046 0.131 0.726

BMI, body mass index; NSAA, North Star ambulatory assessment; RFF, rise from floor; 10MWR, 10-meter walk/run.
aTime and age are measured in years; RFF velocity is measured as 1/ second; 10MWR velocity is measured as meters/ second; height is measured in 
cm; weight is measured in kg; BMI is measured in kg/m2

https://doi.org/10.1371/journal.pone.0325736.t004

https://doi.org/10.1371/journal.pone.0325736.t003
https://doi.org/10.1371/journal.pone.0325736.t004
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quartile included more patients with stable or improving NSAA total scores. Visually, the variability in NSAA total score 
changes remained high across groups; all groups included patients with improvements exceeding 5 units and declines 
exceeding 5 units.

Fig 3.  Observed NSAA Total Score Changes by Quartile of Predicted Change (Core Model). NSAA, North Star ambulatory assessment.

https://doi.org/10.1371/journal.pone.0325736.g003

https://doi.org/10.1371/journal.pone.0325736.g003
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Assessment of missing data

The proportion of patients with missing NSAA data increased over follow-up time, with missing proportions of 24%, 47%, 
73%, 88%, and 92% observed at months 12, 24, 36, 48, and 60, respectively. The majority of missingness was monotone 
rather than intermittent, i.e., due to dropout and/or cessation of NSAA assessment for the remainder of the patients’ follow-up 
rather than sporadic missing assessments that are both preceded and followed by completed assessments (S1 Fig).

Multiple imputation of these missing NSAA values resulted in longer periods with low NSAA total scores (S2 Fig) and 
consequently greater average declines in NSAA total scores after imputation compared with the observed NSAA data 
alone (Fig 4). This pattern was observed with and without adjustments for baseline covariates (Fig 4). Inferred bias in the 
overall population’s mean NSAA trajectory due to missing data increased over time, while remaining small in magnitude 
for a centrally representative trajectory, from +0.1 units at year 1 to +1.7 units by year 5 (Table 5). Adjustment for baseline 
covariates further decreased the inferred bias during years 4 and 5 (Table 5). While the bias due to missing NSAA data 
was small on average, further investigation of subpopulations indicated greater bias for patients aged 10 years or older 
at baseline. In this group the estimated bias due to missing data became larger at 3 years of follow-up and later, reaching 
over 5 units by year 5 (S3 Fig). Bias remained small and positive for patients with baseline age younger than 10 years, or 
with baseline NSAA total score above or below the median (S4-S6 Figs).

Machine learning sensitivity analysis

When comparing the predictive performance of the GEE and MERF approaches, we found that the tuned MERF model 
performed slightly worse than the core GEE model over the first 4 years of follow-up, with cross-validated RMSE val-
ues consistently higher for MERF. While MERF performed numerically better at year 5 (RMSE: 9.49 vs. 9.53), this dif-
ference was not meaningful or statistically significant as 95% confidence intervals overlapped substantially. For both 

Fig 4.  Average NSAA Total Score Trajectories with and without Imputation of Missing NSAA Data. Abbreviations: BMI, body mass index; 
NSAA, North Star ambulatory assessment; RFF, rise from floor; 10MWR, 10-meter walk/run. Notes: Adjusted changes were estimated from generalized 
estimating equation models controlling for baseline covariates including age, NSAA total score, 10MWR, RFF, steroid type, height, weight, and BMI. 
Error bars represent 95% confidence intervals for the mean change in NSAA total score at each timepoint.

https://doi.org/10.1371/journal.pone.0325736.g004

https://doi.org/10.1371/journal.pone.0325736.g004
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models, prediction errors increased in later years, reflecting increased prediction uncertainty and data sparsity with longer 
follow-up (S7 Fig).

Discussion

Average NSAA total score trajectories were well-predicted over up to 5 years using a patient’s baseline age, NSAA total 
score, timed 10MWR, timed RFF, corticosteroid type, height, weight, and BMI to an accuracy of 3.6, 5.1, 5.9, 7.5 and 
9.5 NSAA units at years 1–5, respectively; predictions for group means had greater precision, with standard errors of 
0.2, 0.3, 0.4, 0.7, and 1.1, respectively. This level of predictive accuracy is suitable for many applications in drug develop-
ment, such as those summarized in Table 6. Since these predictions are based on more than 400 subjects, they exhibit 
lower variability than the smaller samples, generally fewer than 100 subjects, enrolled in DMD clinical trials. Such predic-
tions can serve to benchmark or contextualize NSAA outcomes in clinical trials, including open-label extension studies, 
beyond the duration of follow-up for which placebo controls would be feasible in ambulatory DMD. As the predictive accu-
racy of this model decreases over time, treatment effects would need to be larger at later time points to be distinguishable 
from predictive controls with high confidence.

Important predictors of longer-term NSAA outcomes included those identified in prior studies of 48-week change in the 
NSAA total score [22], 6MWD [18], and 4SC [19], including multiple measures of baseline function, in this case baseline 

Table 5.  Estimated Mean Changes in NSAA Total Score with and without Accounting for Missing NSAA Data, and Adjustment for Baseline 
Covariates.

Change in NSAA Total Score (Mean ± SE)

1-year 2-year 3-year 4-year 5-year

Non-imputed unadjusted −2.3 ± 0.2 −4.8 ± 0.4 −7.4 ± 0.5 −10.3 ± 0.7 −13.3 ± 1.1

Imputed unadjusted −2.4 ± 0.1 −5.1 ± 0.2 −8.1 ± 0.3 −11.4 ± 0.5 −15.0 ± 0.8

Non-imputed adjusteda −2.0 ± 0.2 −4.5 ± 0.3 −7.3 ± 0.4 −10.3 ± 0.7 −13.7 ± 1.1

Imputed adjusteda −2.2 ± 0.1 −5.1 ± 0.2 −8.0 ± 0.3 −11.1 ± 0.5 −14.2 ± 0.9

Abbreviations: BMI = body mass index; NSAA = North Star Ambulatory Assessment; RFF = rise from floor; SE = standard error; 10MWR = 10-meter walk/
run.

Note:
aAdjustment was conducted for baseline covariates including age, NSAA total score, 10MWR, RFF, steroid type, height, weight, and BMI.

https://doi.org/10.1371/journal.pone.0325736.t005

Table 6.  Use Cases for Prognostic Factors and Prognostic Models in Drug Development.

Application of prognostic factors or 
models in drug development

Considerations for use

Inclusion/exclusion criteria, enrichment Enrichment for modifiable trajectories can improve power, and depends on the ability to predict trajecto-
ries. The better the prediction the better the enrichment that can be achieved.

Stratification of randomization The purpose of stratified randomization is to ensure balance on important prognostic factors. The logisti-
cal complexity of stratification is best invested in the most important prognostic factors.

Adjustment for baseline characteristics Adjustment for prognostic factors improves precision and power by reducing unexplained variation. 
Combining prognostic factors into a composite prognostic score is more efficient than adjusting for many 
factors separately. When pre-specified and applied to randomized trials this approach can improve 
power without threatening trial validity or protection of Type I error [28].

External controls, placebo augmentation When using external data to measure drug effects in a clinical trials, with a stand-alone external control 
or placebo augmentation, adjustment for baseline prognostic factors is critical to reduce risk of confound-
ing bias [29]. This can be accomplished by adjusting for or matching on known prognostic factors, a 
prognostic score (i.e., a prediction of each individual’s outcome given their characteristics) or by directly 
comparing treated patient outcomes to predicted controls based on a validated prediction model.

https://doi.org/10.1371/journal.pone.0325736.t006

https://doi.org/10.1371/journal.pone.0325736.t005
https://doi.org/10.1371/journal.pone.0325736.t006
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NSAA, RFF, and 10MWR, along with corticosteroid type, height, weight and BMI [30]. One exception was that age was 
identified as an important predictor of longer-term NSAA outcomes in the present study, whereas age was not strongly 
predictive of 48-week outcomes in multiple prior studies with large sample sizes [18,19,22,30]. This may be due to the fact 
that our prognostic model focuses on long-term NSAA outcomes (up to 5 years), whereas these prior studies examined 
shorter-term predictions. The impact of age may become more pronounced over longer periods.

It was initially surprising that steroid regimen (daily vs. other) did not add substantial prognostic value in the present 
study, especially in light of daily regimens showing better motor function outcomes over 3 years, regardless of steroids 
type, compared with intermittent prednisone in the randomized FOR-DMD trial [31]. These findings are compatible, 
considering that FOR-DMD measured the effect of assigned steroid regimen among steroid naïve patients, whereas the 
present study assessed the predictive value of steroid regimen among patients already receiving steroids, with the aver-
age patient having initiated steroids over 2 years before baseline. The predictive values of both steroid type and regimen 
were small in the present study, explaining less than 2% of the variation in NSAA total score outcomes, after accounting 
for the predictive value of baseline age and motor function profile. The future NSAA trajectory of a patient who has already 
been receiving steroid treatment would be better predicted by his current age and functional profile than by steroid type 
or regimen. Indeed, baseline functional profiles in the present study already reflect effects of pre-baseline steroid type 
and regimen, leaving less room for those factors to add predictive value going forward. Therefore, predictive values in the 
present study should not be interpreted causally.

While real-world data are important for understanding disease progression, missing assessments of ambulatory motor 
function have been difficult to avoid in large, long-term, real-world databases in DMD, especially as patients approach 
loss of ambulatory function. Our analyses indicated that the bias due to missing NSAA assessments is small in magnitude 
and, importantly, positive in direction. That is, reported NSAA data present a more favorable picture of the natural history 
of disease, on average, than the reality experienced by patients with DMD, since the missing NSAA assessments tend to 
contain lower scores than the observed assessments. This direction of bias would render external controls based on these 
data sources conservative with respect to missing NSAA data, with bias towards smaller-than-actual treatment effects in 
comparative analyses, regardless of the analysis method used (e.g., predicted controls based on the current model, or 
direct use of the patient-level natural history data via multivariable regression, matching approaches, or placebo aug-
mentation). A straightforward and conservative analysis of the observed NSAA data could be supplemented by multiple 
imputation to account for this bias.

Other models for NSAA outcomes have been developed in DMD. The Duchenne Regulatory Science Consortium 
(D-RSC) base model includes baseline NSAA, age corticosteroid use (use vs. naïve), and genotypes as predictors [32], 
and is designed to simulate a distribution of NSAA trajectories that can be used to inform clinical trial simulation and 
design. This model used a smaller set of predictors, and a different mathematical approach commonly used in pharma-
cometrics (a Chapman-Richards model), whereas the present study used a broader set of baseline predictors, combining 
multiple measures of motor function as well as methods commonly used in analyses of efficacy outcomes in cohort stud-
ies and clinical trials. Other previous studies focused on 3-year NSAA changes found the effect of age, baseline 6MWT, 
and steroid treatment to be significant on the disease progression [17]. Studies also showed that there is a significant dif-
ference in NSAA trajectories over 3 years based on mutation subgroups [15]. Similar findings have been found for 6MWT, 
which emphasizes the importance of considering longer-term projections for this outcome as well [14,17]. The impact of 
the DMD genotype classes studied here was previously found to be small for 1-year changes in NSAA and for times from 
baseline to reaching 10MWR over 10 seconds, especially after adjusting for a patient’s baseline motor function status [33].

The five-year follow-up horizon was selected as it represents the longest period reasonably supported by the data while 
maintaining sufficient sample size for reliable estimation. Our model extends beyond the typical 48-week to 18-month 
duration of placebo-controlled trials, addressing the need for longer-term outcome predictions while remaining applicable 
to shorter timeframes as well. The focus on ambulatory patients aged 4 to under 16 years receiving corticosteroids was 
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chosen to reflect typical enrollment criteria for contemporary DMD clinical trials, as the NSAA can only be meaningfully 
measured in ambulatory patients and corticosteroid therapy is now standard of care. This alignment with current trial pop-
ulations increases the model’s direct applicability for trial design and interpretation in the modern treatment landscape.

Limitations

This study has several limitations. First, some predictors, including 4SC and 6MWD, were not available in all data sources 
and were therefore not evaluated. Other predictors, including magnetic resonance imaging (MRI) metrics and genetic 
modifiers, were not available and should also be investigated. Additional DMD genotypes, beyond the classes stud-
ied here, were small in number and were not studied. Some of the covariates used in the exploratory models, such as 
genotype class and corticosteroid regimen, included missing data, leading to reduced sample size. The quality of non-
missing data is also uncertain in some of these factors, e.g., steroid frequency and steroid dose per kg bodyweight are 
not regularly updated in all databases and must be carried forward over long periods. Future research with more detailed 
medication data would be valuable to explore how real-world steroid dose relative to target may impact NSAA trajectories. 
The majority of patients in the present study self-reported their race as White, or did not have race recorded. The impact 
of patient race as a prognostic factor, or as a modifier of other factors, was not studied. Moreover, only a fraction of the 
included patients (approximately 12%) have data up to 5 years of follow-up in this study, which may affect both the preci-
sion and generalizability of the model predictions at year 5.

The present model includes linear and quadratic effects of time on the NSAA trajectory, which are modified by the 
included baseline characteristics. While it is possible that different modeling assumptions (e.g., functional forms for 
NSAA trajectories or impacts of predictors, such as interactions or threshold effects) could improve prediction, this seems 
unlikely with the present data given the lack of improvement seen with the flexible machine learning approach, which 
explored a diverse multitude of possible models.

The present study does not explore the strengths and limitations of different ways of applying prediction models to use 
cases in drug development. Many of these use cases warrant caution and carry risks of bias that have been extensively 
described [29,34]. In particular, while 1-year changes in the NSAA total score have been found to be highly consistent 
across data sources, natural history studies and clinical trial placebo arms, geographies, and years 2003–2016 [22], there 
is still a risk of “open-label bias.” This can occur when performance outcomes such as the NSAA are compared between 
patients receiving open-label investigational therapy and external or predicted controls. The concern is that patients, 
caregivers, or clinical assessors might record better performance, even unintentionally, when the patient is known to be on 
the investigational therapy due to greater motivation, hope for improvement, or other factors. Given the progressive nature 
of DMD there is a limit on how much a patient could over-perform on NSAA due to such biases, especially over multi-year 
time periods. Better quantifying the risk and magnitude of open-label bias in NSAA and other functional outcomes in DMD 
represents an important step in the use and interpretation of external controls.

Conclusions

Prognostic models for changes in NSAA over 5 years are feasible in DMD. Additional research is warranted to ensure 
that predictions are accurate, and that validated models apply across broad populations with DMD. The prediction model 
developed in the present study is faithful to the studied data sources and can provide reasonable predicted controls to 
help contextualize treated patients over up to 5 years of follow-up.
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